Math 136 - Week 1

Chapter 1 - Vectors in Euclidean Space

1.1 Vector Addition and Scalar Multiplication

Instead of points, we work with vectors.

Definition 1.1.1 - Rn

The set Rn is defined by Rn={x=[x1xn]|x1,,xnR}. An element v of Rn is called a vector.
Two vectors x=[x1xn]Rn and y=[y1ym]Rn are said to be equal if n=m and xi=yi for 1in.

In other words, they are said to be equal if the vectors are both in the same space (R2, R3, etc.) AND if each dimension of each vector is the same.

For example,

[12][120]

And,

[12][123]

But,

[12]=[12]
Remark!

Just because you are working in R6 doesn't mean you are working in the 6th dimension. For example, an engineer analyzing the motion of a particle would require 3 variables for a particle's position and 3 variables for a particle's velocity. In Economics, one could work with 1000 different variables and hence working in R1000.

Geometrically, a vector in Rn always has its tail at the origin and its head at the corresponding point.

Definition 1.1.2 - Addition and Scalar Multiplication

Let x=[x1xn], y=[y1ym]Rn and let cR (called a scalar).
Addition, x, and scalar multiplication, cx, are defined by

x+y=[x1+y1xn+yn]andcx=[cx1cxn]

In linear algebra, a scalar is just a number in R. In the above definition, each x is being scaled by c times.

Remark!

Subtraction is just defined as the addition of a negative. When we write xy, we mean

xy=x+(1)y
Example 1.1.3

For x=[123] and y=[130] in R3, we have

x+y=[1+(1)2+33+0]=[053]2y=2[(1)30]=[2320]2x3y=2[123]+(3)[130]=[246]+[390]=[556]
Exercise 1.1.5

Add x=[32] and y=[41] in R2. Then, express the results geometrically.

x+y=[32]+[41]=[11]

Geometrically, We can express it as:
{8EBDB53A-B178-43E5-BBA2-EEDF58DE8EF8}.png

Definition 1.1.6 - Linear Combination

For v1,,vkRn and c1,,ckR, we call the expression

c1v1+c2v2++ckvk

a linear combination of v1,,vk.

This definition IS EXTREMELY IMPORTANT!!!!

Theorem 1.1.7

If x,y,wRn and c,dR, then:

V1x+yRnV2(x+y)+w=x+(y+w)V3x+y=y+xV4There exists 0Rn s.t. x+0=x for all xRnV5For every xRn there exists (x)Rn s.t. x+(x)=0V6cxRnV7c(dx)=(cd)xV8(c+d)x=cx+dxV9c(x+y)=cx+cyV101x=x

Proofs:
Let x=[x1xn], y=[y1yn], w=[w1wn]Rn and c,d,R.

V1:

x+y=[x1xn]+[y1yn]=[x1+y1xn+yn]

Since x1+y1,, xn+ynR, by definition, x+yRn, as desired.

V2:
LHS:

(x+y)+w=([x1xn]+[y1yn])+[w1wn]=([x1+y1xn+yn])+[w1wn]=[(x1+y1)+w1(xn+yn)+wn]=[x1+y1+w1xn+yn+wn]

RHS:

x+(y+w)=[x1xn]+([y1yn]+[w1wn])=[x1xn]+([y1+w1yn+wn])=[x1+(y1+w1)xn+(yn+wn)]=[x1+y1+w1xn+yn+wn]

LHS=RHS as desired.

V3:

x+y=[x1xn]+[y1yn]=[x1+y1xn+yn]=[y1+x1yn+xn]since addition of real numbers is commutative=y+x

V4:
Let 0Rn. Then,

x+0=[x1xn]+[00]=[x1+0xn+0]=[x1xn]=x

As desired.

V5:
Let (xRn). Then,

x+(x)=[x1xn]+(1)[x1xn]=[x1xn]+[x1xn]=[x1x1xnxn]=[00]=0

As desired.

V6:

cx=c[x1xn]=[cx1cxn]Rnsince cxiR for all 1in.

V7:

c(dx)=c(d[x1xn])=c([dx1dxn])=c[dx1dxn]=[c(dx1)c(dxn)]=[d(cx1)d(cxn)]=d[cx1cxn]=d(c[x1xn])=d(cx)

As desired.

V8:

(c+d)x=(c+d)[x1xn]=[(c+d)x1(c+d)xn]=[cx1+dx1cxn+dxn]=[cx1cxn]+[dx1dxn]=c[x1xn]+d[x1xn]=cx+dx

As desired.

V9:

c(x+y)=c[x1+y1xn+yn]=[c(x1+y1)c(xn+yn)]=[cx1+cy1cxn+cyn]=[cx1cxn]+[cy1cyn]=c[x1xn]+c[y1yn]=cx+cy

As desired.

V10:

1x=1[x1xn]=[(1)x1(1)xn]by addition=[x1xn]rules of multiplication on R=xn

As desired.

1.1 - Problems

  1. Compute the following linear combinations.
    1. 2[211]+3[101].
      Solution:
    2[211]+3[101]=[422]+[303]=[121]
    1. 13[312][41223].
      Solution:
    \displaystyle\frac{1}{3}\begin{bmatrix}3 \ 1 \ -2\end{bmatrix} - \begin{bmatrix}4 \ \frac{1}{2} \-\frac{2}{3}\end{bmatrix} &= \begin{bmatrix}1 \ \frac{1}{3} \ -\frac{2}{3}\end{bmatrix} + \begin{bmatrix}-4 \ -\frac{1}{2} \\frac{2}{3}\end{bmatrix} \
    &= \begin{bmatrix} -3 \ -\frac{1}{6} \ 0
    \end{bmatrix}
    \end{aligned} \Solution:\sqrt{ 2 }\begin{bmatrix}\sqrt{ 2 } \ 0 \ \sqrt{ 2 }\end{bmatrix} + \displaystyle\frac{2}{3}\begin{bmatrix}6 \ 0 \ 0 \end{bmatrix} &= \begin{bmatrix} 2 \ 0 \ 2\end{bmatrix} + \begin{bmatrix}4 \ 0 \ 0 \end{bmatrix} \
    &= \begin{bmatrix}
    6 \ 0 \ 2
    \end{bmatrix}
    \endSolution:(a+b) \begin{bmatrix} 1 \ 1 \ -1\end{bmatrix} + (-a+b) \begin{bmatrix} 1 \ 2 \ -3\end{bmatrix} + (-a+2b) \begin{bmatrix} -1 \ -1 \ 2\end{bmatrix} &= \begin{bmatrix} (a+b) \ (a+b) \ -(a+b)\end{bmatrix} + \begin{bmatrix} (-a+b) \ 2(-a+b) \ -3(-a+b)\end{bmatrix} + \begin{bmatrix} -(-a+2b) \ -(-a+2b) \ 2(-a+2b)\end{bmatrix} \
    &= \begin{bmatrix} a-a+a+b+b-2b \ a -2a+a+b+2b-2b \ -a+3a-2a-b-3b+4b\end{bmatrix} \
    &= \begin{bmatrix}
    a \ b \ 0
    \end{bmatrix}
    \end
    1. 2x+2v=4x.
      Solution:
    2\vec{x} + 2\vec{v} &= 4\vec{x} \
    2\vec{x} + 2(\vec{-x}) + 2\vec{v} &= 4\vec{x} + 2(-\vec{x}) && \text{by V5 and addition} \
    2(\vec{x} + (-\vec{x})) + 2\vec{v} &= 2(2\vec{x} + (-\vec{x})) && \text{by V9} \
    2(\vec{0}) + 2\vec{v} &= 2(\vec{x}) && \text{by V5 and addition of vectors}\
    \vec{0} + 2\vec{v} &= 2\vec{x} && \text{by scalar multiplication} \
    2\vec{v}\left( \frac{1}{2} \right)&=2\vec{x}\left( \frac{1}{2} \right) && \text{by V4} \
    1\vec{v} &=1\vec{x} && \text{by V7} \
    \vec{x} &= \vec{v} && \text{by V10}
    \endSolution:\vec{x} + 2\vec{v} &= \vec{v} + (-\vec{x}) \
    \vec{x} + \vec{x} + 2\vec{v} + 2(-\vec{v}) &= \vec{v} + 2(-\vec{v}) + -\vec{x} + \vec{x} \
    2\vec{x} + 2(\vec{v} + (-\vec{v})) &= \vec{v} + (-2\vec{v}) + \vec{0} && \text{by vector addition, V9, V5} \
    2\vec{x} + 2(\vec{0}) &= (-\vec{v}) && \text{by V5, vector addition, V4} \
    2\vec{x} + \vec{0} &= (-\vec{v}) && \text{by scalar multiplication} \
    2\vec{x} \left( \frac{1}{2} \right) &= (-\vec{v})\left( \frac{1}{2} \right) && \text{by V4} \
    1\vec{x} &= \left( -\frac{1}{2} \right) (\vec{v}) && \text{by V7} \
    \vec{x} &= \left( -\frac{1}{2} \right)(\vec{v}) && \text{by V10}
    \end
  2. Looking at the area of the parallelogram formed by the parallelogram rule for addition on x,yR2.
    1. Calculate each of the following and show the result geometrically. Find the area of each parallelogram formed by the parallelogram rule for addition.
      1. [11]+[02].
        Solution:
      base×h=1×2=2
      {93D6B702-8A48-4938-AFD5-FB131C132458}.png
      2. [21]+[21].
      Solution:0
      {F604E94C-2FB8-45F7-8431-5DC848FBA0BA}.png
    2. What condition must be placed on x and y to ensure that the parallelogram has non-zero area?
      Solution: x,y0 and geometrically, x and y can't be on the same line together.
    3. Create two more pairs x,yR2 that form a parallelogram with non-zero area. Find the area of each parallelogram.
      Solution:
      1. [20],[01].
        Area: 2×1=2
      2. [0.50],[11].
        Area:
      2[(0.5+1)×12]=0.5
    4. Find a general formula for the area of the parallelogram determined by x,yR2. Prove that your formula is correct.
      Solution:
      Let x=[x1x2] and y=[y1y2].
      Area = |x1y1x2y2|